Tampilkan postingan dengan label Pendidikan. Tampilkan semua postingan
Tampilkan postingan dengan label Pendidikan. Tampilkan semua postingan

Selasa, 04 Maret 2014

Pengertian Sel

 

Pengertian Sel

Pengertian Sel adalah unit struktural dan fungsional terkecil penyusun Mahluk Hidup. Definisi tentang pengertian sel tersebut mungkin sedikit sukar untuk dipahami, oleh karena itu definisi Sel dapat kita sederhanakan. Sel adalah satuan terkecil penyusun Mahluk HidupTubuh kita (manusia) terdiri dari beribu-ribu atau bahkan berjuta sel-sel, begitu pula dengan Tumbuhan dan Hewan. Gambar sel hewan dan tumbuhan dapat dilihat dibawah ini:


gambar sel tumbuhan dan sel hewan
gambar sel hewan dan sel tumbuhan
Menurut Campbell di bukunya yang berjudul Biologi jilid 1 (edisi ke delapan). Sel berasal dari kata “cella ” yang berarti ruangan berukuran kecil. Maka sel merupakan unit ( kesatuan zahra ) terkecil organisasi yang menjadi dasar kehidupan dalam arti biologi. Semua fungsi kehidupan diatur dan berlangsung di dalam sel, karena itulah sel dapat berfungsi secara autonomy asalkan kebutuhan hidupnya terpenuhi.

Organime Multiseluler dan Organisme Uniseluler

Organisme (Mahluk Hidup) yang terdiri dari banyak sel disebut Multiseluler, contohnya adalah Manusia, Hewan dan Tumbuhan. Sedangkan Organisme yang hanya memiliki satu sel saja disebut Uniseluler, contohnya adalah bakteri dan ganggang. Jadi Dapat disimpulkan bahwa Organisme Multiseluler adalah organisme yang tubuhnya terdiri dari banyak sel sedangkan Organisme Uniseluler adalah organisme yang hanya memiliki satu sel saja sebagai penyusun tubuhnya.

Perbedaan organisme multiseluler dan organesme uniseluler selain dari jumlah sel penyusun tubuhnya adalah Organime Multiseluler biasanya memiliki tubuh yang besar dan dapat dilihat oleh mata tanpa menggunakan alat bantu, sedangkan Organisme Uniseluler biasanya berukuran Mikroskopis dan harus menggunakan Mikroskop untuk melihatnya.


Apakah virus mempunyai sel?

gambar struktur virus (virus tidak mempunyai sel)
gambar struktur virus

Apakah virus mempunyai sel? jawabannya tentu tidak, karena virus adalah aseluler. Aseluler adalah tidak memiliki sel, hal ini lah yang menyebabkan perdebatan tentang masuknya Virus ke dalam mahluk hidup atau tidak. Karena Virus adalah organisme Aseluler, lalu bagaimanakah cara virus hidup dan berkembang biak? Pada dasarnya Virus tidak bisa bereproduksi sendiri karena tidak mempunyai sel dan Virus tidak bisa hidup tanpa sel inangnya. Karena tidak dapat hidup tanpa sel inang, virus juga tidak dapat berkembang biak tanpa sel inang. Kondisi virus tanpa sel inang sering disebut fase pasif atau beku.

Sel Prokariotik dan Eukariotik

Pada dasarnya sel terbagi menjadi dua jenis, yaitu sel prokariotik dan sel eukariotk. Sel prokariotik, merupakan tipe sel yang tidak memiliki sistem endomembran sehingga sel tipe ini memiliki materi inti yang tidak dibatasi oleh sistem membran, tidak memiliki organel yang dibatasi oleh sistem membran. Sel eukariotik memiliki organel yang dibatasi oleh sistem membran yang sering disebut sebagai membran inti.

Teori Perkembangan Atom


1. Teori Atom John Dalton

Pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnaya tentang atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa “Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi”. Sedangkan Prouts menyatakan bahwa “Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap”. Dari kedua hukum tersebut Dalton mengemukakan pendapatnya tentang atom sebagai berikut:

Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi
Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.
Hipotesa Dalton digambarkan dengan model atom sebagai bola pejal seperti pada tolak peluru. Seperti gambar berikut ini:








Kelemahan:

Teori dalton tidak menerangkan hubungan antara larutan senyawa dan daya hantar arus listrik.

2. Teori Atom J. J. Thomson

Berdasarkan penemuan tabung katode yang lebih baik oleh William Crookers, maka J.J. Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan selanjutnya disebut elektron.
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson. Yang menyatakan bahwa:

“Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron”

Model atomini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal. Model atom Thomson dapat digambarkan sebagai berikut:

Kelemahan:

Kelemahan model atom Thomson ini tidak dapat menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.

3. Teori Atom Rutherford

Rutherford bersama dua orang muridnya (Hans Geigerdan Erners Masreden) melakukan percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut:

Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan
Jika lempeng emas tersebut dianggap sebagai satu lapisanatom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif.
Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.
Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang dikenal dengan Model Atom Rutherford yang menyatakan bahwa Atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron yang bermuatan negatif. Rutherford menduga bahwa didalam inti atom terdapat partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak saling tolak menolak.

Model atom Rutherford dapat digambarkan sebagai beriukut:



Kelemahan:

Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom.

4. Teori Atom Bohr

ada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:

Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, ΔE = hv.
Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau nh/2∏, dengan n adalah bilangan bulat dan h tetapan planck.
Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.


Kelemahan:

Model atom ini tidak bisa menjelaskan spektrum warna dari atom berelektron banyak.

5. Teori Atom Modern
Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.

Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.


Persamaan Schrodinger.





x,y dan z    :  Posisi dalam tiga dimensi
Y               :  Fungsi gelombang
m               Massa
ђ                :   h/2p dimana h = konstanta plank dan p = 3,14
E                :  Energi total
V               :  Energi potensial

Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.

Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.

Ciri khas model atom mekanika gelombang

Gerakan elektron memiliki sifat gelombang, sehingga lintasannya (orbitnya) tidak stasioner seperti model Bohr, tetapi mengikuti penyelesaian kuadrat fungsi gelombang yang disebut orbital (bentuk tiga dimensi darikebolehjadian paling besar ditemukannya elektron dengan keadaan tertentu dalam suatu atom)
Bentuk dan ukuran orbital bergantung pada harga dari ketiga bilangan kuantumnya. (Elektron yang menempati orbital dinyatakan dalam bilangan kuantum tersebut)
Posisi elektron sejauh 0,529 Amstrong dari inti H menurut Bohr bukannya sesuatu yang pasti, tetapi bolehjadi merupakan peluang terbesar ditemukannya elektron.

Teori Terbentuknya Suatu Negara


Teori Terbentukya Suatu Negara – Panutan.com. Sebelumnya kita sudah membahas tentang unsur-unsur suatu Negara, dimana tanpa unsur-unsur tersebut suatu negara tidak akan bisa disebut dengan negara. Unsur-unsur yang dimaksud adalah wilayah, penduduk, pemerintah yang berdaulat, dan juga pengakuan dari negara lain. Dari unsur-unsur yang sudah disebutkan diatas, suatu negara dapat terjadi melalui beberapa proses dan proses-proses itu dapat kita lihat dari berbagai teori tentang terbentuknya suatu negara.


Teori terbentuknya suatu negara dibedakan menjadi 4 bagian, yang pertama berdasarkan teori riwayat pembentukannya, kedua berdasarkan kenyataan apa adanya, ketiga berdasarkan terori terjadinya, dan terakhir berdasarkan teori riwayat pertumbuhannya (secara sosiologis).
Berikut macam-macam teori tentang asal mula terbentuknya negara.
a. Asal mula negara berdasarkan teori riwayat pembentukannya
1. Teori hukum alam
Teori hukum alam merupakan hasil pemikiran yang paling awal. Berdasarkan teori hukum alam, terjadinya negara ialah sesuatu yang alamiah. Negara terjadi secara alamiah dengan bersumber dari manusia sebagai makhluk sosial yang memiliki kecenderungan berkumpul dan saling berhubungan untuk mencapai kebutuhan hidupnya. Tokoh-tokoh teori ini adalah Plato dan Aristoteles. Negara menurut Plato (429–347 SM) ialah suatu keluarga besar yang setiap anggotanya saling berhubungan, bekerja sama, serta memiliki tugas sendiri untuk memenuhi kebutuhan mereka. Adapun negara menurut Aristoteles (384–322 SM) bermula dari keluarga, sekelompok keluarga, kemudian bergabung menjadi lebih besar, dan terbentuklah desa, masyarakat luas, serta akhirnya terbentuk negara.
2) Teori ketuhanan (teokrasi)
Teori ini juga dikenal sebagai doktrin teokrasi tentang asal mula negara. Pada abad pertengahan, teori ini dipakai untuk membenarkan kekuasaan raja yang mutlak. Berdasarkan teori ini, raja bertakhta karena kehendak Tuhan.
Kekuasaan dan hak-hak raja untuk memerintah dan bertakhta berasal dari Tuhan. Pelanggaran terhadap kekuasaan raja merupakan pelanggaran terhadap Tuhan. Raja serta pemimpin-pemimpin negara hanya bertanggung jawab kepada Tuhan, tidak kepada siapa pun. Penganjur teori ini adalah Agustinus, F.J. Stahl, Thomas Aquinas, Ludwig Von Halfer, serta F. Hegel.
3) Teori perjanjian (perjanjian masyarakat)
Menurut teori ini, kehidupan manusia dipisahkan dalam dua zaman, yakni zaman sebelum ada negara serta zaman sesudahnya. Keadaan tidak bernegara (pranegara) disebut keadaan alamiah. Di sini individu hidup tanpa organisasi serta pimpinan, tanpa hukum, dan tanpa negara serta pemerintah yang mengatur hidup mereka. Keadaan alamiah itu harus diakhiri denganjalan mengadakan perjanjian bersama. Dibentuklah negara melalui suatu perjanjian di mana individu-individu merupakan pesertanya. Negara berdaulat merupakan tujuannya sehingga dapat melindungi serta menjamin kehidupan mereka. Perjanjian ini disebut perjanjian masyarakat atau kontrak sosial. Pelopor teori perjanjian ini adalah Plato, Aristoteles, Thomas Hobbes, John Locke, dan J.J. Rousseau.
4) Teori kekuasaan/kekuatan
Teori ini berpendapat bahwa negara timbul karena orang-orang kuat menaklukkan orang-orang lemah. Untuk dapat menguasai orang-orang lemah, maka didirikanlah organisasi, yaitu negara. Teori ini dikemukakan oleh Karl Marx (1818–1883), Frederick Engels, Harold J Laski (1893–1950), F. Oppenheimer, dan Leon Duguit.
b. Asal mula negara menurut kenyataan apa adanya
Keempat teori di atas sering disebut juga dengan teori Klasik Tradisional. Sejak zaman dahulu, teori ini sudah ada dan hingga kini masih tetap selalu dipelajari oleh mereka yang ingin mempelajari negara
serta hukum. Tetapi, pada masa sekarang, ajaran dari keempat teori tersebut tidak memberikan kepuasan. Itulah sebabnya timbul berbagai reaksi terhadap teori-teori tersebut. Ahli-ahli tata negara modern tidak menyetujui adanya usaha untuk menyelidiki asal mula negara serta hakiki historis dari
negara. Mereka bersikap skeptis serta menganggap tidak perlu lagi untuk mengetahui dan menyelidiki tentang asal mula negara itu, yang penting kita terima saja negara itu sebagaimana adanya sebagai suatu kenyataan.
Menurut kejadian yang nyata, negara itu terbentuk, antara lain, karena hal-hal berikut.
1) Fusi (peleburan), merupakan penggabungan antara dua atau lebih negara menjadi suatu negara baru. Misalnya, pembentukan Kerajaan Jerman tahun 1871 dan peleburan Jerman Barat serta Jerman Timur pada tanggal 3 Oktober 1990.
2) Pemisahan diri, yaitu memisahnya suatu bagian wilayah negara untuk menciptakan suatu negara baru. Pemisahan diri tidak dapat dikatakan sama dengan pemecahan karena negara yang lama masih ada. Contohnya, Belgia terhadap Belanda tahun 1839, Bangladesh terhadap Pakistan tahun 1971, dan Timor Timur (Timor Leste) dari Indonesia tanggal 30 Agustus 1999.
3) Pemecahan, yaitu terpecahnya suatu negara yang menimbulkan negara-negara baru sehingga negara sebelumnya menjadi hilang (lenyap). Misalnya, negara Columbia pecah menjadi negara-negara baru (Venezuela, Equador, dan Columbia Baru) pada tahun 1832; Uni Soviet terpecah-pecah
menjadi Rusia, Lithuania (11 Maret 1990), Estonia (20 Agustus 1991), Latvia (21 Agustus 1991), Belarusia, Kazakhstan, Ukraina, Azerbaijan, Kirgiztan, Uzbekistan, dan Armenia; Yugoslavia terpecah menjadi negara-negara Serbia-Montenegro, Kroasia (25 Juni 1991), Slovenia (25 Juni 1991), Bosnia- Herzegovina (15 Oktober 1991), dan Macedonia (9 September 1991).
4) Penaklukan (occupatie), yaitu suatu daerah yang telah diduduki seseorang atau bangsa yang kemudian diambil alih untuk didirikan negara di wilayah itu. Misalnya, Liberia adalah daerah kosong yang dijadikan negara oleh para budak negro yang telah dimerdekakan orang Amerika. Liberia dimerdekakan pada tahun 1847.
5) Pendudukan, yaitu penguasaan terhadap wilayah yang ada penduduknya, namun tidak berpemerintahan. Misalnya, Australia merupakan daerah baru yang ditemukan Inggris meskipun di sana terdapat suku Aborigin untuk selanjutnya dibuat koloni. Penduduknya didatangkan dari daratan Eropa. Australia dimerdekakan tahun 1901 oleh Inggris.
6) Perjuangan, yaitu suatu daerah yang pada awalnya merupakan tanah jajahan dari negara lain, suatu saat menyatakan kemerdekaannya. Misalnya, Indonesia menyatakan kemerdekaannya atas
penjajahan Jepang dan Belanda pada tanggal 17 Agustus 1945. Di samping itu, kebanyakan negara di Asia dan Afrika yang merdeka setelah Perang Dunia II merupakan hasil perjuangan rakyatnya.
7) Penyerahan, yaitu terbentuknya negara dari suatu koloni yang diberi kemerdekaan oleh negara lain yang sebelumnya menjajahnya. Inggris dan Prancis yang memiliki wilayah-wilayah jajahan di Afrika banyak memberikan kemerdekaan kepada bangsa di daerah tersebut. Contohnya, Kongo dimerdekakan oleh Prancis dan Brunei Darussalam dimerdekakan oleh Inggris.
c. Asal mula negara menurut teori terjadinya
1) Teori organis
Negara dipersamakan dengan organisme hidup manusia atau binatang. Individu yang merupakan komponen-komponen negara dipandang sebagai sel-sel dari makhluk hidup itu. Kehidupan korporal dari negara dapat disamakan dengan tulang-belulang manusia. Undang-undang sebagai urat syaraf, raja (kaisar) sebagai kepala, serta para individu sebagai dagingnya. Penganut teori ini ialah Nicholas dan J.W. Schelling.
2) Teori historis
Lembaga-lembaga sosial tidak dibuat, melainkan tumbuh secara evolusioner sesuai dengan kebutuhan-kebutuhan manusia merupakan penjelasan teori historis atau teori evolusionistis. Lembaga-lembaga itu tidak luput dari pengaruh tempat, waktu, serta tuntutan-tuntutan zaman guna memenuhi kebutuhan manusia. Negara akhirnya dibentuk dalam rangka memenuhi tuntutan-tuntutan zaman.
d. Asal mula negara berdasarkan riwayat pertumbuhannya (secara sosiologis)
Terjadinya negara adalah melalui suatu proses, yakni pertama-tama lahir sebuah rumah tangga baru yang kemudian berkembang hingga akhirnya membentuk suatu kesatuan yang lebih besar yang disebut keluarga. Biasanya keluarga diurus oleh orang yang dipandang tertua. Perasaan perhubungan darah yang sama serta telah mempunyai kesadaran dalam berorganisasi kemudian membentuk suku.
Apabila suku telah menempati suatu daerah tertentu, mempunyai cita-cita untuk bersama, serta bertekad teguh memperjuangkan cita-cita mereka karena perasaan senasib dalam sejarah, maka terbentuklah bangsa. Akhirnya, apabila bangsa dalam mengejar cita-citanya telah berada pada suatu organisasi kekuasaan yang kuat serta teratur yang disebut pemerintah yang berdaulat, maka terbentuklah negara.

TEORI-TEORI PEMBENTUKAN TATA SURYA


Kecerdasan yang diberikan oleh TUHAN kepada manusia memang sangat mengesankan, sehingga beberapa manusia cerdas yang turut andil dalam perkembangan ilmu pengetahuan dapat merumuskan sebuah pola di masa lalu dengan fakta-fakta yang ada pada masa sekarang.
salah satunya adalah munculnya teori – teori pembentukan tata surya yang dilahirkan oleh beberapa ilmuwan yang kemudian berkembang menjadi sebuah pemahaman dasar pada sejarah tata surya di masa silam. apa saja teori teori pembentukan jagad raya tersebut? silahkan simak di bawah ini :

1. Teori Proto Planet (Awan Debu) [Carl Von Weizsaecker, G.P. Kuiper & Subrahmanyan Chandarasekhar]

Tata surya terbentuk dari gumpalan awan gas dan debu. Alam semesta saat ini juga terdapat gumpalan awan dan debu yang bertebaran di angkasa. Selama kurang lebih 5.000 juta tahun yang lalu, salah satu awan gas tersebut mengalami pemampatan. Pada proses pemampatan tersebut partikel-partikel debu tertarik ke pusat awan dan membentuk gumpalan bola dan mulai berpilin.
Selanjutnya gumpalan bola gas tersebut memipih berbentuk cakram. Partikel-pertikel di bagian tengah cakaram kemudian saling menekan sehingga menimbulkan panas dan menjadi pijar (matahari). Bagian yang lebih luar berputar sangat cepat sehingga terpecah menjadi gumpalan-gumpalan kecil. Gumpalan kecil ini berpilin juga dan mengalami pembekuan dan menjadi planet serta satelit.

2. Teori Pasang Surut [Jeans-Jeffrey,1917]

Sebuah bintang besar mendekati matahari dalam jarak pendek, dapat menyebabkan pengerjaan pasang surut pada tubuh matahari pada massa matahari itu masih berada dalam keadaan gas. Gaya tarikan ini membentuk lidah gas panas. Dalam lidah yang panas ini akan terjadi pengrapatan gas-gas dan akhirnya kolom-kolom ini akan pecah lalu bercerai menjadi benda-benda tersendiri yang merupakan planet-planet. Teori ini dikemukakan oleh Jeans dan Jeffreys.

3. Teori Planetisimal [Moulton dan Chamberlain]

Pada mulanya telah terdapat “matahari asal”. Pada suatu ketika matahari asal ini didekati oleh sebuah bintang besar, yang menyebabkan terjadinya penarikan pada bagian matahari. Oleh tenaga penarikan pada matahari asal tadi, maka terjadilah peledakan-peledakan yang hebat. Gas yang meledak ini keluar dari atmosfer matahari, kemudian mengembun dan membeku sebagai benda-benda yang padat dan disebut planetesimal. Benda padat yang disebut planetesimal ini dalam perkembangan selanjutnya menjadi planet-planet yang salah satunya adalah bumi kita. Teori ini dikemukakan oleh Chamberlin dan Moulton.

4. Teori Kabut (nebula) [Kant-Lapplace, 1755]

Di jagat raya telah terdapat gas yang kemudian berkumpul menjadi kabut (nebula). Gaya tarik-menarik antar gas hingga membentuk kumpulan kabut yang sangat besar ini berputar semakin cepat. Dalam proses perputaran yang kencang ini, menyebabkan materi kabut bagian khatulistiwa terlempar memisah dan memadat (karena pendinginan). Fragmen yang terlempar inilah yang kemudian menjadi planet-planet dalam tata surya.  Bagian inti kabut tetap berbentuk gas pijar yang kita lihat sebagai matahari sekarang ini.

5. Teori Bintang Kembar [Hoyle, 1956]

Teori ini dikemukakan oleh RA Lyttleton pada tahun 1956. Teori ini diberi nama teori bintang kembar karna Lyttleton beranggapan bahwa tata surya ( matahari dan planet ) terbentuk dari dua buah bintang, yang kemudian salah satunya hancur dan membentuk panet dan yang lainnya menjadi bintang ( matahari ) adapun alasan dari pendapat ini karna setelah penelitian terhadap tata surya lain ternya ada tata surya yang memiliki bintang kembar, oleh karna itulah Lyttleton beranggapan bahwa tata surya kita terbentuk dari proses meladaknya bintang kembar. Adapun raian dari teori tersebut adalah sebagai berikut :
Pada awalnya di tata surya kita ada dua buah bintang kembar yaitu matahari dan kembarannya. Entah karma sebab apa kemudian lama kelamaan kembaran dari matahari tersebut mengalami ledakan ledakan kecil hinga pada suatu ketika kemudian kembaran dari maahari tersebut benar – bena meledak menjadi serpihan – serpihan kecil dan debu – debu. Serpihan dan debu tersebut kemudian terperangkap oleh gaya grafitasi matahari, namun tidak tersedot masuk. Kemudian debu – debu yang terbentuk nberkumpul dan mempilin sehingga membentuk planet dan serpihan – serpihan batuan membentuk jalur asteroid yang memisahkan  planet dalam dan luar.

6. Teori Ledakan Dahsyat [The Big Bang]

Teori ini menyatakan bahwa adanya suatu massa yang sangat besar dan mempunyai berat jenis yang besar pula. Karena ada reaksi inti, maka massa tersebut meledak dengan hebatnya (big bang). Bagian yang berserakan dengan cepat menjauhi pusat ledakan. Setelah berjuta-juta tahun, bagian-bagian yang berserakan tersebut membentuk kelompok-kelompok dengan berat jenis yang lebih rendah. Kelompok-kelompok tersbut yang menjadi galaksi sekarang ini.
 

Teory Evolusi


Evolusi (dalam kajian biologi) berarti perubahan pada sifat-sifat terwariskan suatu populasi organisme dari satu generasi ke generasi berikutnya. Perubahan-perubahan ini disebabkan oleh kombinasi tiga proses utama: variasi, reproduksi, dan seleksi. Sifat-sifat yang menjadi dasar evolusi ini dibawa oleh gen yang diwariskan kepada keturunan suatu makhluk hidup dan menjadi bervariasi dalam suatu populasi. Ketika organisme bereproduksi, keturunannya akan mempunyai sifat-sifat yang baru. Sifat baru dapat diperoleh dari perubahan gen akibat mutasi ataupun transfer gen antar populasi dan antar spesies. Pada spesies yang bereproduksi secara seksual, kombinasi gen yang baru juga dihasilkan oleh rekombinasi genetika, yang dapat meningkatkan variasi antara organisme. Evolusi terjadi ketika perbedaan-perbedaan terwariskan ini menjadi lebih umum atau langka dalam suatu populasi.
Evolusi didorong oleh dua mekanisme utama, yaitu seleksi alam dan hanyutan genetik. Seleksi alam merupakan sebuah proses yang menyebabkan sifat terwaris yang berguna untuk keberlangsungan hidup dan reproduksi organisme menjadi lebih umum dalam suatu populasi - dan sebaliknya, sifat yang merugikan menjadi lebih berkurang. Hal ini terjadi karena individu dengan sifat-sifat yang menguntungkan lebih berpeluang besar bereproduksi, sehingga lebih banyak individu pada generasi selanjutnya yang mewarisi sifat-sifat yang menguntungkan ini.[1][2] Setelah beberapa generasi, adaptasi terjadi melalui kombinasi perubahan kecil sifat yang terjadi secara terus menerus dan acak ini dengan seleksi alam.[3] Sementara itu, hanyutan genetik (Bahasa Inggris: Genetic Drift) merupakan sebuah proses bebas yang menghasilkan perubahan acak pada frekuensi sifat suatu populasi. Hanyutan genetik dihasilkan oleh probabilitas apakah suatu sifat akan diwariskan ketika suatu individu bertahan hidup dan bereproduksi.
Walaupun perubahan yang dihasilkan oleh hanyutan dan seleksi alam kecil, perubahan ini akan berakumulasi dan menyebabkan perubahan yang substansial pada organisme. Proses ini mencapai puncaknya dengan menghasilkan spesies yang baru.[4] Dan sebenarnya, kemiripan antara organisme yang satu dengan organisme yang lain mensugestikan bahwa semua spesies yang kita kenal berasal dari nenek moyang yang sama melalui proses divergen yang terjadi secara perlahan ini.[1]
Dokumentasi fakta-fakta terjadinya evolusi dilakukan oleh cabang biologi yang dinamakan biologi evolusioner. Cabang ini juga mengembangkan dan menguji teori-teori yang menjelaskan penyebab evolusi. Kajian catatan fosil dan keanekaragaman hayati organisme-organisme hidup telah meyakinkan para ilmuwan pada pertengahan abad ke-19 bahwa spesies berubah dari waktu ke waktu.[5][6] Namun, mekanisme yang mendorong perubahan ini tetap tidaklah jelas sampai pada publikasi tahun 1859 oleh Charles Darwin, On the Origin of Species yang menjelaskan dengan detail teori evolusi melalui seleksi alam.[7] Karya Darwin dengan segera diikuti oleh penerimaan teori evolusi dalam komunitas ilmiah.[8][9][10][11] Pada tahun 1930, teori seleksi alam Darwin digabungkan dengan teori pewarisan Mendel, membentuk sintesis evolusi modern,[12] yang menghubungkan satuan evolusi (gen) dengan mekanisme evolusi (seleksi alam). Kekuatan penjelasan dan prediksi teori ini mendorong riset yang secara terus menerus menimbulkan pertanyaan baru, di mana hal ini telah menjadi prinsip pusat biologi modern yang memberikan penjelasan secara lebih menyeluruh tentang keanekaragaman hayati di bumi.[9][10][13]
Meskipun teori evolusi selalu diasosiasikan dengan Charles Darwin, namun sebenarnya biologi evolusioner telah berakar sejak zaman Aristoteles. Namun demikian, Darwin adalah ilmuwan pertama yang mencetuskan teori evolusi yang telah banyak terbukti mapan menghadapi pengujian ilmiah. Sampai saat ini, teori Darwin mengenai evolusi yang terjadi karena seleksi alam dianggap oleh mayoritas komunitas sains sebagai teori terbaik dalam menjelaskan peristiwa evolusi.[14]

Sejarah pemikiran evolusi

Alfred Wallace, dikenal sebagai Bapak Biogeografi Evolusi
Charles Darwin pada usia 51, beberapa waktu setelah mempublikasi buku On the Origin of Species.
Pemikiran-pemikiran evolusi seperi nenek moyang bersama dan transmutasi spesies telah ada paling tidak sejak abad ke-6 SM ketika hal ini dijelaskan secara rinci oleh seorang filsuf Yunani, Anaximander.[15] Beberapa orang dengan pemikiran yang sama meliputi Empedokles, Lucretius, biologiawan Arab Al Jahiz,[16] filsuf Persia Ibnu Miskawaih, Ikhwan As-Shafa,[17] dan filsuf Cina Zhuangzi.[18] Seiring dengan berkembangnya pengetahuan biologi pada abad ke-18, pemikiran evolusi mulai ditelusuri oleh beberapa filsuf seperti Pierre Maupertuis pada tahun 1745 dan Erasmus Darwin pada tahun 1796.[19] Pemikiran biologiawan Jean-Baptiste Lamarck tentang transmutasi spesies memiliki pengaruh yang luas. Charles Darwin merumuskan pemikiran seleksi alamnya pada tahun 1838 dan masih mengembangkan teorinya pada tahun 1858 ketika Alfred Russel Wallace mengirimkannya teori yang mirip dalam suratnya "Surat dari Ternate". Keduanya diajukan ke Linnean Society of London sebagai dua karya yang terpisah.[20] Pada akhir tahun 1859, publikasi Darwin, On the Origin of Species, menjelaskan seleksi alam secara mendetail dan memberikan bukti yang mendorong penerimaan luas evolusi dalam komunitas ilmiah.
Perdebatan mengenai mekanisme evolusi terus berlanjut, dan Darwin tidak dapat menjelaskan sumber variasi terwariskan yang diseleksi oleh seleksi alam. Seperti Lamarck, ia beranggapan bahwa orang tua mewariskan adaptasi yang diperolehnya selama hidupnya,[21] teori yang kemudian disebut sebagai Lamarckisme.[22] Pada tahun 1880-an, eksperimen August Weismann mengindikasikan bahwa perubahan ini tidak diwariskan, dan Lamarkisme berangsur-angsur ditinggalkan.[23][24] Selain itu, Darwin tidak dapat menjelaskan bagaimana sifat-sifat diwariskan dari satu generasi ke generasi yang lain. Pada tahun 1865, Gregor Mendel menemukan bahwa pewarisan sifat-sifat dapat diprediksi.[25] Ketika karya Mendel ditemukan kembali pada tahun 1900-an, ketidakcocokan atas laju evolusi yang diprediksi oleh genetikawan dan biometrikawan meretakkan hubungan model evolusi Mendel dan Darwin.
Walaupun demikian, adalah penemuan kembali karya Gregor Mendel mengenai genetika (yang tidak diketahui oleh Darwin dan Wallace) oleh Hugo de Vries dan lainnya pada awal 1900-an yang memberikan dorongan terhadap pemahaman bagaimana variasi terjadi pada sifat tumbuhan dan hewan. Seleksi alam menggunakan variasi tersebut untuk membentuk keanekaragaman sifat-sifat adaptasi yang terpantau pada organisme hidup. Walaupun Hugo de Vries dan genetikawan pada awalnya sangat kritis terhadap teori evolusi, penemuan kembali genetika dan riset selanjutnya pada akhirnya memberikan dasar yang kuat terhadap evolusi, bahkan lebih meyakinkan daripada ketika teori ini pertama kali diajukan.[26]
Kontradiksi antara teori evolusi Darwin melalui seleksi alam dengan karya Mendel disatukan pada tahun 1920-an dan 1930-an oleh biologiawan evolusi seperti J.B.S. Haldane, Sewall Wright, dan terutama Ronald Fisher, yang menyusun dasar-dasar genetika populasi. Hasilnya adalah kombinasi evolusi melalui seleksi alam dengan pewarisan Mendel menjadi sintesis evolusi modern.[27] Pada tahun 1940-an, identifikasi DNA sebagai bahan genetika oleh Oswald Avery dkk. beserta publikasi struktur DNA oleh James Watson dan Francis Crick pada tahun 1953, memberikan dasar fisik pewarisan ini. Sejak saat itu, genetika dan biologi molekuler menjadi inti biologi evolusioner dan telah merevolusi filogenetika.[12]
Pada awal sejarahnya, biologiawan evolusioner utamanya berasal dari ilmuwan yang berorientasi pada bidang taksonomi. Seiring dengan berkembangnya sintesis evolusi modern, biologi evolusioner menarik lebih banyak ilmuwan dari bidang sains biologi lainnya.[12] Kajian biologi evolusioner masa kini melibatkan ilmuwan yang berkutat di bidang biokimia, ekologi, genetika, dan fisiologi. Konsep evolusi juga digunakan lebih lanjut pada bidang seperti psikologi, pengobatan, filosofi, dan ilmu komputer.

Dasar genetik evolusi

Struktur DNA. Basa nukleotida berada di tengah, dikelilingi oleh rantai fosfat-gula dalam bentuk heliks ganda.
Evolusi organisme terjadi melalui perubahan pada sifat-sifat yang terwariskan. Warna mata pada manusia, sebagai contohnya, merupakan sifat-sifat yang terwariskan ini.[28] Sifat terwariskan dikontrol oleh gen dan keseluruhan gen dalam suatu genom organisme disebut sebagai genotipe.[29]
Keseluruhan sifat-sifat yang terpantau pada perilaku dan struktur organisme disebut sebagai fenotipe. Sifat-sifat ini berasal dari interaksi genotipe dengan lingkungan.[30] Oleh karena itu, tidak setiap aspek fenotipe organisme diwariskan. Kulit berwarna gelap yang dihasilkan dari penjemuran matahari berasal dari interaksi antara genotipe seseorang dengan cahaya matahari; sehingga warna kulit gelap ini tidak akan diwarisi ke keturunan orang tersebut. Walaupun begitu, manusia memiliki respon yang berbeda terhadap cahaya matahari, dan ini diakibatkan oleh perbedaan pada genotipenya. Contohnya adalah individu dengan sifat albino yang kulitnya tidak akan menggelap dan sangat sensitif terhadap sengatan matahari.[31]
Sifat-sifat terwariskan diwariskan antar generasi via DNA, sebuah molekul yang dapat menyimpan informasi genetika.[29] DNA merupakan sebuah polimer yang terdiri dari empat jenis basa nukleotida. Urutan basa pada molekul DNA tertentu menentukan informasi genetika. Bagian molekul DNA yang menentukan sebuah satuan fungsional disebut gen; gen yang berbeda mempunyai urutan basa yang berbeda. Dalam sel, unting DNA yang panjang berasosiasi dengan protein, membentuk struktur padat yang disebut kromosom. Lokasi spesifik pada sebuah kromosom dikenal sebagai lokus. Jika urutan DNA pada sebuah lokus bervariasi antar individu, bentuk berbeda pada urutan ini disebut sebagai alel. Urutan DNA dapat berubah melalui mutasi, menghasilkan alel yang baru. Jika mutasi terjadi pada gen, alel yang baru dapat memengaruhi sifat individu yang dikontrol oleh gen, menyebabkan perubahan fenotipe organisme. Walaupun demikian, manakala contoh ini menunjukkan bagaimana alel dan sifat bekerja pada beberapa kasus, kebanyakan sifat lebih kompleks dan dikontrol oleh interaksi banyak gen.[32][33]

Variasi

Fenotipe suatu individu organisme dihasilkan dari genotipe dan pengaruh lingkungan organisme tersebut. Variasi fenotipe yang substansial pada sebuah populasi diakibatkan oleh perbedaan genotipenya.[33] Sintesis evolusioner modern mendefinisikan evolusi sebagai perubahan dari waktu ke waktu pada variasi genetika ini. Frekuensi alel tertentu akan berfluktuasi, menjadi lebih umum atau kurang umum relatif terhadap bentuk lain gen itu. Gaya dorong evolusioner bekerja dengan mendorong perubahan pada frekuensi alel ini ke satu arah atau lainnya. Variasi menghilang ketika sebuah alel mencapai titik fiksasi, yakni ketika ia menghilang dari suatu populasi ataupun ia telah menggantikan keseluruhan alel leluhur.[34]
Variasi berasal dari mutasi bahan genetika, migrasi antar populasi (aliran gen), dan perubahan susunan gen melalui reproduksi seksual. Variasi juga datang dari tukar ganti gen antara spesies yang berbeda; contohnya melalui transfer gen horizontal pada bakteria dan hibridisasi pada tanaman.[35] Walaupun terdapat variasi yang terjadi secara terus menerus melalui proses-proses ini, kebanyakan genom spesies adalah identik pada seluruh individu spesies tersebut.[36] Namun, bahkan perubahan kecil pada genotipe dapat mengakibatkan perubahan yang dramatis pada fenotipenya. Misalnya simpanse dan manusia hanya berbeda pada 5% genomnya.[37]

Mutasi

Penggandaan pada kromosom
Variasi genetika berasal dari mutasi acak yang terjadi pada genom organisme. Mutasi merupakan perubahan pada urutan DNA sel genom dan diakibatkan oleh radiasi, virus, transposon, bahan kimia mutagenik, serta kesalahan selama proses meiosis ataupun replikasi DNA.[38][39][40] Mutagen-mutagen ini menghasilkan beberapa jenis perubahan pada urutan DNA. Hal ini dapat mengakibatkan perubahan produk gen, mencegah gen berfungsi, atupun tidak menghasilkan efek sama sekali. Kajian pada lalat Drosophila melanogaster menunjukkan bahwa jika sebuah mutasi mengubah protein yang dihasilkan oleh sebuah gen, 70% mutasi ini memiliki efek yang merugikan dan sisanya netral ataupun sedikit menguntungkan.[41] Oleh karena efek-efek merugikan mutasi terhadap sel, organisme memiliki mekanisme reparasi DNA untuk menghilangkan mutasi.[38] Oleh karena itu, laju mutasi yang optimal untuk sebuah spesies merupakan kompromi bayaran laju mutasi tinggi yang merugikan, dengan bayaran metabolik sistem mengurangi laju mutasi, seperti enzim reparasi DNA.[42] Beberapa spesies seperti retrovirus memiliki laju mutasi yang tinggi, sedemikian rupanya keturunannya akan memiliki gen yang bermutasi.[43] Mutasi cepat seperti ini dipilih agar virus ini dapat secara konstan dan cepat berevolusi, sehingga dapat menghindari respon sistem immun manusia.[44]
Mutasi dapat melibatkan duplikasi fragmen DNA yang besar, yang merupakan sumber utama bahan baku untuk gen baru yang berevolusi, dengan puluhan sampai ratusan gen terduplikasi pada genom hewan setiap satu juta tahun.[45] Kebanyakan gen merupakan bagian dari famili gen leluhur yang sama yang lebih besar.[46]
Gen dihasilkan oleh beberapa metode, umumnya melalui duplikasi dan mutasi gen leluhur ataupun dengan merekombinasi bagian gen yang berbeda, membentuk kombinasi baru dengan fungsi yang baru.[47][48] Sebagai contoh, mata manusia menggunakan empat gen untuk menghasilkan struktur yang dapat merasakan cahaya: tiga untuk sel kerucut, dan satu untuk sel batang; keseluruhannya berasal dari satu gen leluhur tunggal.[49] Keuntungan duplikasi gen (atau bahkan keseluruhan genom) adalah bahwa tumpang tindih atau fungsi berlebih pada gen ganda mengijinkan alel-alel dipertahankan (jika tidak akan membahayakan), sehingga meningkatkan keanekaragaman genetika.[50]
Perubahan pada bilangan kromosom dapat melibatkan mutasi yang bahkan lebih besar, dengan segmen DNA dalam kromosom terputus kemudian tersusun kembali. Sebagai contoh, dua kromosom pada genus Homo bersatu membentuk kromosom 2 manusia; pernyatuan ini tidak terjadi pada garis keturunan kera lainnya, dan tetap dipertahankan sebagai dua kromosom terpisah.[51] Peran paling penting penataan ulang kromosom ini pada evolusi kemungkinan adalah untuk mempercepat divergensi populasi menjadi spesies baru dengan membuat populasi tidak saling berkembang biak, sehingga mempertahankan perbedaan genetika antara populasi ini.[52]
Urutan DNA yang dapat berpindah pada genom, seperti transposon, merupakan bagian utama pada bahan genetika tanaman dan hewan, dan dapat memiliki peran penting pada evolusi genom.[53] Sebagai contoh, lebih dari satu juta kopi urutan Alu terdapat pada genom manusia, dan urutan-urutan ini telah digunakan untuk menjalankan fungsi seperti regulasi ekspresi gen.[54] Efek lain dari urutan DNA yang bergerak ini adalah ketika ia berpindah dalam suatu genom, ia dapat memutasikan atau mendelesi gen yang telah ada, sehingga menghasilkan keanekaragaman genetika.[39]

Jenis kelamin dan rekombinasi

Pada organisme aseksual, gen diwariskan bersama, atau ditautkan, karena ia tidak dapat bercampur dengan gen organisme lain selama reproduksi. Keturunan organisme seksual mengandung campuran acak kromosom leluhur yang dihasilkan melalui pemilahan bebas. Pada proses rekombinasi genetika terkait, organisme seksual juga dapat bertukarganti DNA antara dua kromosom yang berpadanan.[55] Rekombinasi dan pemilahan ulang tidak mengubahan frekuensi alel, namun mengubah alel mana yang diasosiasikan satu sama lainnya, menghasilkan keturunan dengan kombinasi alel yang baru.[56] Manakala proses ini meningkatkan variasi pada keturunan individu apapun, pencampuran genetika dapat diprediksi untuk tidak menghasilkan efek, meningkatkan, ataupun mengurangi variasi genetika pada populasi, bergantung pada bagaimana ragam alel pada populasi tersebut terdistribusi. Sebagai contoh, jika dua alel secara acak terdistribusi pada sebuah populasi, maka jenis kelamin tidak akan memberikan efek pada variasi. Namun, jika dua alel cenderung ditemukan sebagai satu pasang, maka pencampuran genetika akan menyeimbangkan distribusi tak-acak ini, dan dari waktu ke waktu membuat organisme pada populasi menjadi lebih mirip satu sama lainnya.[56] Efek keseluruhan jenis kelamin pada variasi alami tidaklah jelas, namun riset baru-baru ini menunjukkan bahwa jenis kelamin biasanya meningkatkan variasi genetika dan dapat meningkatkan laju evolusi.[57][58]
Rekombinasi mengijinkan alel sama yang berdekatan satu sama lainnya pada unting DNA diwariskan secara bebas. Namun laju rekombinasi adalah rendah, karena pada manusia dengan potongan satu juta pasangan basa DNA, terdapat satu di antara seratus peluang kejadian rekombinasi terjadi per generasi. Akibatnya, gen-gen yang berdekatan pada kromosom tidak selalu disusun ulang menjauhi satu sama lainnya, sehingga cenderung diwariskan bersama.[59] Kecenderungan ini diukur dengan menemukan bagaimana sering dua alel gen yang berbeda ditemukan bersamaan, yang disebut sebagai ketakseimbangan pertautan (linkage disequilibrium). Satu set alel yang biasanya diwariskan bersama sebagai satu kelompok disebut sebagai haplotipe.
Reproduksi seksual membantu menghilangkan mutasi yang merugikan dan mempertahankan mutasi yang menguntungkan.[60] Sebagai akibatnya, ketika alel tidak dapat dipisahkan dengan rekombinasi (misalnya kromosom Y mamalia yang diwariskan dari ayah ke anak laki-laki), mutasi yang merugikan berakumulasi.[61][62] Selain itu, rekombinasi dan pemilahan ulang dapat menghasilkan individu dengan kombinasi gen yang baru dan menguntungkan. Efek positif ini diseimbangkan oleh fakta bahwa proses ini dapat menyebabkan mutasi dan pemisahan kombinasi gen yang menguntungkan.[60]

Genetika populasi

Biston Betularia hitam
Dari sudut pandang genetika, evolusi ialah perubahan pada frekuensi alel dalam populasi yang saling berbagi lungkang gen (gene pool) dari generasi yang satu ke generasi yang lain.[63] Sebuah populasi merupakan kelompok individu terlokalisasi yang merupakan spesies yang sama. Sebagai contoh, semua ngengat dengan spesies yang sama yang hidup di sebuah hutan yang terisolasi mewakili sebuah populasi. Sebuah gen tunggal pada populasi ini dapat mempunyai bentuk-bentuk alternatif yang bertanggung jawab terhadap variasi antar fenotipe organisme. Contohnya adalah gen yang bertanggung jawab terhadap warna ngengat mempunyai dua alel: hitam dan putih. Lungkang gen merupakan keseluruhan set alel pada sebuah populasi tunggal, sehingga tiap alel muncul pada lungkang gen beberapa kali. Fraksi gen dalam lungkang gen yang merupakan alel tertentu disebut sebagai frekuensi alel. Evolusi terjadi ketika terdapat perubahan pada frekuensi alel dalam sebuah populasi organisme yang saling berkembangbiak; sebagai contoh alel untuk warna hitam pada populasi ngengat menjadi lebih umum.
Untuk memahami mekanisme yang menyebabkan sebuah populasi berevolusi, adalah sangat berguna untuk memperhatikan kondisi-kondisi apa saja yang diperlukan oleh suatu populasi untuk tidak berevolusi. Asas Hardy-Weinberg menyatakan bahwa frekuensi alel (variasi pada sebuah gen) pada sebuah populasi yang cukup besar akan tetap konstan jika gaya dorong yang terdapat pada populasi tersebut hanyalah penataan ulang alel secara acak selama pembentukan sperma atau sel telur dan kombinasi acak alel sel kelamin ini selama pembuahan.[64] Populasi seperti ini dikatakan sebagai dalam kesetimbangan Hardy-Weinberg dan tidak berevolusi.[65]

Aliran gen

Singa jantan meninggalkan kelompok tempat ia lahir, dan menuju ke kelompok yang baru untuk berkawin. Hal ini menyebabkan aliran gen antar kelompok singa.
Aliran gen merupakan pertukaran gen antar populasi, yang biasanya merupakan spesies yang sama.[66] Contoh aliran gen dalam sebuah spesies meliputi migrasi dan perkembangbiakan organisme atau pertukaran serbuk sari. Transfer gen antar spesies meliputi pembentukan organisme hibrid dan transfer gen horizontal.
Migrasi ke dalam atau ke luar populasi dapat mengubah frekuensi alel, serta menambah variasi genetika ke dalam suatu populasi. Imigrasi dapat menambah bahan genetika baru ke lungkang gen yang telah ada pada suatu populasi. Sebaliknya, emigrasi dapat menghilangkan bahan genetika. Karena pemisahan reproduksi antara dua populasi yang berdivergen diperlukan agar terjadi spesiasi, aliran gen dapat memperlambat proses ini dengan menyebarkan genetika yang berbeda antar populasi. Aliran gen dihalangi oleh barisan gunung, samudera, dan padang pasir. Bahkan bangunan manusia seperti Tembok Raksasa Cina dapat menghalangi aliran gen tanaman.[67]
Bergantung dari sejauh mana dua spesies telah berdivergen sejak leluhur bersama terbaru mereka, adalah mungkin kedua spesies tersebut menghasilkan keturunan, seperti pada kuda dan keledai yang hasil perkawinan campurannya menghasilkan bagal.[68] Hibrid tersebut biasanya mandul, oleh karena dua set kromosom yang berbeda tidak dapat berpasangan selama meiosis. Pada kasus ini, spesies yang berhubungan dekat dapat secara reguler saling kawin, namun hibrid yang dihasilkan akan terseleksi keluar, dan kedua spesies ini tetap berbeda. Namun, hibrid yang berkemampuan berkembang biak kadang-kadang terbentuk, dan spesies baru ini dapat memiliki sifat-sifat antara kedua spesies leluhur ataupun fenotipe yang secara keseluruhan baru.[69] Pentingnya hibridisasi dalam pembentukan spesies baru hewan tidaklah jelas, walaupun beberapa kasus telah ditemukan pada banyak jenis hewan,[70] Hyla versicolor merupakan contoh hewan yang telah dikaji dengan baik.[71]
Hibridisasi merupakan cara spesiasi yang penting pada tanaman, karena poliploidi (memiliki lebih dari dua kopi pada setiap kromosom) dapat lebih ditoleransi pada tanaman dibandingkan hewan.[72][73] Poliploidi sangat penting pada hibdrid karena ia mengijinkan reproduksi, dengan dua set kromosom yang berbeda, tiap-tiap kromosom dapat berpasangan dengan pasangan yang identik selama meiosis.[74] Poliploid juga memiliki keanekaragaman genetika yeng lebih, yang mengijinkannya menghindari depresi penangkaran sanak (inbreeding depression) pada populasi yang kecil.[75]
Transfer gen horizontal merupakan transfer bahan genetika dari satu organisme ke organisme lainnya yang bukan keturunannya. Hal ini paling umum terjadi pada bakteri.[76] Pada bidang pengobatan, hal ini berkontribusi terhadap resistansi antibiotik. Ketika satu bakteri mendapatkan gen resistansi, ia akan dengan cepat mentransfernya ke spesies lainnya.[77] Transfer gen horizontal dari bakteri ke eukariota seperti khamir Saccharomyces cerevisiae dan kumbang Callosobruchus chinensis juga dapat terjadi.[78][79] Contoh transfer dalam skala besar adalah pada eukariota bdelloid rotifers, yang tampaknya telah menerima gen dari bakteri, fungi, dan tanaman.[80] Virus juga dapat membawa DNA antar organisme, mengijinkan transfer gen antar domain.[81] Transfer gen berskala besar juga telah terjadi antara leluhur sel eukariota dengan prokariota selama akuisisi kloroplas dan mitokondria.[82]

Mekanisme

Mekanisme utama untuk menghasilkan perubahan evolusioner adalah seleksi alam dan hanyutan genetika. Seleksi alam memfavoritkan gen yang meningkatkan kapasitas keberlangsungan dan reproduksi. Hanyutan genetika merupakan perubahan acak pada frekuensi alel, disebabkan oleh percontohan acak (random sampling) gen generasi selama reproduksi. Aliran gen merupakan transfer gen dalam dan antar populasi. Kepentingan relatif seleksi alam dan hanyutan genetika dalam sebuah populasi bervariasi, tergantung pada kuatnya seleksi dan ukuran populasi efektif, yang merupakan jumlah individu yang berkemampuan untuk berkembang biak.[83] Seleksi alam biasanya mendominasi pada populasi yang besar, sedangkan hanyutan genetika mendominasi pada populasi yang kecil. Dominansi hanyutan genetika pada populasi yang kecil bahkan dapat menyebabkan fiksasi mutasi yang sedikit merugikan.[84] Karenanya, dengan mengubah ukuran populasi dapat secara dramatis memengaruhi arah evolusi. Leher botol populasi, di mana populasi mengecil untuk sementara waktu dan kehilangan variasi genetika, menyebabkan populasi yang lebih seragam.[34] Leher botol disebabkan oleh perubahan pada aliran gen, seperti migrasi yang menurun, ekspansi ke habitat yang baru, ataupun subdivisi populasi.[83]

Seleksi alam

Seleksi alam populasi berwarna kulit gelap.
Seleksi alam adalah proses di mana mutasi genetika yang meningkatkan keberlangsungan dan reproduksi suatu organisme menjadi (dan tetap) lebih umum dari generasi yang satu ke genarasi yang lain pada sebuah populasi. Ia sering disebut sebagai mekanisme yang "terbukti sendiri" karena:
  • Variasi terwariskan terdapat dalam populasi organisme.
  • Organisme menghasilkan keturunan lebih dari yang dapat bertahan hidup
  • Keturunan-keturunan ini bervariasi dalam kemampuannya bertahan hidup dan bereproduksi.
Kondisi-kondisi ini menghasilkan kompetisi antar organisme untuk bertahan hidup dan bereproduksi. Oleh sebab itu, organisme dengan sifat-sifat yang lebih menguntungkan akan lebih berkemungkinan mewariskan sifatnya, sedangkan yang tidak menguntungkan cenderung tidak akan diwariskan ke generasi selanjutnya.
Konsep pusat seleksi alam adalah kebugaran evolusi organisme. Kebugaran evolusi mengukur kontribusi genetika organisme pada generasi selanjutnya. Namun, ini tidaklah sama dengan jumlah total keturunan, melainkan kebugaran mengukur proporsi generasi tersebut untuk membawa gen sebuah organisme.[85] Karena itu, jika sebuah alel meningkatkan kebugaran lebih daripada alel-alel lainnya, maka pada tiap generasi, alel tersebut menjadi lebih umum dalam populasi. Contoh-contoh sifat yang dapat meningkatkan kebugaran adalah peningkatan keberlangsungan hidup dan fekunditas. Sebaliknya, kebugaran yang lebih rendah yang disebabkan oleh alel yang kurang menguntungkan atau merugikan mengakibatkan alel ini menjadi lebih langka.[2] Adalah penting untuk diperhatikan bahwa kebugaran sebuah alel bukanlah karakteristik yang tetap. Jika lingkungan berubah, sifat-sifat yang sebelumnya bersifat netral atau merugikan bisa menjadi menguntungkan dan yang sebelumnya menguntungkan bisa menjadi merugikan.[1].
Seleksi alam dalam sebuah populasi untuk sebuah sifat yang nilainya bervariasi, misalnya tinggi badan, dapat dikategorikan menjadi tiga jenis. Yang pertama adalah seleksi berarah (directional selection), yang merupakan geseran nilai rata-rata sifat dalam selang waktu tertentu, misalnya organisme cenderung menjadi lebih tinggi.[86] Kedua, seleksi pemutus (disruptive selection), merupakan seleksi nilai ekstrem, dan sering mengakibatkan dua nilai yang berbeda menjadi lebih umum (dengan menyeleksi keluar nilai rata-rata). Hal ini terjadi apabila baik organisme yang pendek ataupun panjang menguntungkan, sedangkan organisme dengan tinggi menengah tidak. Ketiga, seleksi pemantap (stabilizing selection), yaitu seleksi terhadap nilai-nilai ektrem, menyebabkan penurunan variasi di sekitar nilai rata-rata.[87] Hal ini dapat menyebabkan organisme secara pelahan memiliki tinggi badan yang sama.
Kasus khusus seleksi alam adalah seleksi seksual, yang merupakan seleksi untuk sifat-sifat yang meningkatkan keberhasilan perkawinan dengan meningkatkan daya tarik suatu organisme.[88] Sifat-sifat yang berevolusi melalui seleksi seksual utamanya terdapat pada pejantan beberapa spesies hewan. Walaupun sifat ini dapat menurunkan keberlangsungan hidup individu jantan tersebut (misalnya pada tanduk rusa yang besar dan warna yang cerah dapat menarik predator),[89] Ketidakuntungan keberlangsungan hidup ini diseimbangkan oleh keberhasilan reproduksi yang lebih tinggi pada penjantan.[90]
Bidang riset yang aktif dalam bidang biologi evolusi pada saat ini adalah satuan seleksi, dengan seleksi alam diajukan bekerja pada tingkat gen, sel, organisme individu, kelompok organisme, dan bahkan spesies.[91][92] Dari model-model ini, tiada yang eksklusif, dan seleksi dapat bekerja pada beberapa tingkatan secara serentak.[93] Di bawah tingkat individu, gen yang disebut transposon berusaha menkopi dirinya di seluruh genom.[94] Seleksi pada tingkat di atas individu, seperti seleksi kelompok, dapat mengijinkan evolusi ko-operasi.[95]

Hanyutan genetika

Simulasi hanyutan genetika 20 alel yang tidak bertaut pada jumlah populasi 10 (atas) dan 100 (bawah). Hanyutan mencapai fiksasi lebih cepat pada populasi yang lebih kecil.
Hanyutan genetika atau ingsut genetik merupakan perubahan frekuensi alel dari satu generasi ke generasi selanjutnya yang terjadi karena alel pada suatu keturunan merupakan sampel acak (random sample) dari orang tuanya; selain itu ia juga terjadi karena peranan probabilitas dalam penentuan apakah suatu individu akan bertahan hidup dan bereproduksi atau tidak.[34] Dalam istilah matematika, alel berpotensi mengalami galat percontohan (sampling error). Karenanya, ketika gaya dorong selektif tidak ada ataupun secara relatif lemah, frekuensi-frekuensi alel cenderung "menghanyut" ke atas atau ke bawah secara acak (langkah acak). Hanyutan ini berhenti ketika sebuah alel pada akhirnya menjadi tetap, baik karena menghilang dari populasi, ataupun menggantikan keseluruhan alel lainnya. Hanyutan genetika oleh karena itu dapat mengeliminasi beberapa alel dari sebuah populasi hanya karena kebetulan saja. Bahkan pada ketidadaan gaya selektif, hanyutan genetika dapat menyebabkan dua populasi yang terpisah dengan stuktur genetik yang sama menghanyut menjadi dua populasi divergen dengan set alel yang berbeda.[96]
Waktu untuk sebuah alel menjadi tetap oleh hanyutan genetika bergantung pada ukuran populasi, dengan fiksasi terjadi lebih cepat dalam populasi yang lebih kecil.[97] Pengukuran populasi yang tepat adalah ukuran populasi efektif, yakni didefinisikan oleh Sewall Wright sebagai bilangan teoretis yang mewakili jumlah individu berkembangbiak yang akan menunjukkan derajat perkembangbiakan terpantau yang sama.
Walaupun seleksi alam bertanggung jawab terhadap adaptasi, kepentingan relatif seleksi alam dan hanyutan genetika dalam mendorong perubahan evolusioner secara umum merupakan bidang riset pada biologi evolusioner.[98] Investigasi ini disarankan oleh teori evolusi molekuler netral, yang mengajukan bahwa kebanyakan perubahan evolusioner merupakan akibat dari fiksasi mutasi netral yang tidak memiliki efek seketika pada kebugaran suatu organisme.[99] Sehingga, pada model ini, kebanyakan perubahan genetika pada sebuat populasi merupakan akibat dari tekanan mutasi konstan dan hanyutan genetika.[100]

Akibat evolusi

Evolusi memengaruhi setiap aspek dari bentuk dan perilaku organisme. Yang paling terlihat adalah adaptasi perilaku dan fisik yang diakibatkan oleh seleksi alam. Adaptasi-adaptasi ini meningkatkan kebugaran dengan membantu aktivitas seperti menemukan makanan, menghindari predator, dan menarik lawan jenis. Organisme juga dapat merespon terhadap seleksi dengan berkooperasi satu sama lainnya, biasanya dengan saling membantu dalam simbiosis. Dalam jangka waktu yang lama, evolusi menghasilkan spesies yang baru melalui pemisahan populasi leluhur organisme menjadi kelompok baru yang tidak akan bercampur kawin.
Akibat evolusi kadang-kadang dibagi menjadi makroevolusi dan mikroevolusi. Makroevolusi adalah evolusi yang terjadi pada tingkat di atas spesies, seperti kepunahan dan spesiasi. Sedangkan mikroevolusi adalah perubahan evolusioner yang kecil, seperti adaptasi yang terjadi dalam spesies atau populasi. Secara umum, makroevolusi dianggap sebagai akibat jangka panjang dari mikroevolusi.[101] Sehingga perbedaan antara mikroevolusi dengan makroevolusi tidaklah begitu banyak terkecuali pada waktu yang terlibat dalam proses tersebut.[102] Namun, pada makroevolusi, sifat-sifat keseluruhan spesies adalah penting. Misalnya, variasi dalam jumlah besar di antara individu mengijinkan suatu spesies secara cepat beradaptasi terhadap habitat yang baru, mengurangi kemungkinan terjadinya kepunahan. Sedangkan kisaran geografi yang luas meningkatkan kemungkinan spesiasi dengan membuat sebagian populasi menjadi terisolasi. Dalam pengertian ini, mikroevolusi dan makroevolusi dapat melibatkan seleksi pada tingkat-tingkat yang berbeda, dengan mikroevolusi bekerja pada gen dan organisme, versus makroevolusi yang bekerja pada keseluruhan spesies dan memengaruhi laju spesiasi dan kepunahan.[103][104][105]
Terdapat sebuah miskonsepsi bahwa evolusi bersifat "progresif", namun seleksi alam tidaklah memiliki tujuan jangka panjang dan tidak perlulah menghasilkan kompleksitas yang lebih besar.[106] Walaupun spesies kompleks berkembang dari evolusi, hal ini terjadi sebagai efek samping dari jumlah organisme yang meningkat, dan bentuk kehidupan yang sederhana tetap lebih umum.[107] Sebagai contoh, mayoritas besar spesies adalah prokariota mikroskopis yang membentuk setengah biomassa dunia walaupun bentuknya yang kecil,[108] serta merupakan mayoritas pada biodiversitas bumi.[109] Organisme sederhana oleh karenanya merupakan bentuk kehidupan yang dominan di bumi dalam sejarahnya sampai sekarang. Kehidupan kompleks tampaknya lebih beranekaragam karena ia lebih mudah diamati.[110]

Adaptasi


Adaptasi merupakan struktur atau perilaku yang meningkatkan fungsi organ tertentu, menyebabkan organisme menjadi lebih baik dalam bertahan hidup dan bereproduksi.[7] Ia diakibatkan oleh kombinasi perubahan acak dalam skala kecil pada sifat organisme secara terus menerus yang diikuti oleh seleksi alam varian yang paling cocok terhadap lingkungannya.[111] Proses ini dapat menyebabkan penambahan ciri-ciri baru ataupun kehilangan ciri-ciri leluhur. Contohnya adalah adaptasi bakteri terhadap seleksi antibiotik melalui perubahan genetika yang menyebabkan resistansi antibiotik. Hal ini dapat dicapai dengan mengubah target obat ataupun meningkatkan aktivitas transporter yang memompa obat keluar dari sel.[112] Contoh lainnya adalah bakteri Escherichia coli yang berevolusi menjadi berkemampuan menggunakan asam sitrat sebagai nutrien pada sebuah eksperimen laboratorium jangka panjang,[113] ataupun Flavobacterium yang berhasil menghasilkan enzim yang mengijinkan bakteri-bakteri ini tumbuh di limbah produksi nilon.[114][115]
Namun, banyak sifat-sifat yang tampaknya merupakan adapatasi sederhana sebenarnya merupakan eksaptasi, yakni struktur yang awalnya beradaptasi untuk fungsi tertentu namun secara kebetulan memiliki fungsi-fungsi lainnya dalam proses evolusi.[116] Contohnya adalah cicak Afrika Holaspis guentheri yang mengembangkan bentuk kepala yang sangat pipih untuk dapat bersembunyi di celah-celah retakan, seperti yang dapat dilihat pada kerabat dekat spesies ini. Namun, pada spesies ini, kepalanya menjadi sangat pipih, sehingga hal ini membantu spesies tersebut meluncur dari pohon ke pohon.[116] Contoh lainnya adalah penggunaan enzim dari glikolisis dan metabolisme xenobiotik sebagai protein struktural yang dinamakan kristalin (crystallin) dalam lensa mata organisme.[117][118]
Kerangka paus balin, label a dan b merupakan tulang kaki sirip yang merupakan adaptasi dari tulang kaki depan; sedangkan c mengindikasikan tulang kaki vestigial.[119]
Ketika adaptasi terjadi melalui modifikasi perlahan pada stuktur yang telah ada, struktur dengan organisasi internal dapat memiliki fungsi yang sangat berbeda pada organisme terkait. Ini merupakan akibat dari stuktur leluhur yang diadaptasikan untuk berfungsi dengan cara yang berbeda. Tulang pada sayap kelelawar sebagai contohnya, secara struktural sama dengan tangan manusia dan sirip anjing laut oleh karena struktur leluhur yang sama yang mempunyai lima jari. Ciri-ciri anatomi idiosinkratik lainnya adalah tulang pada pergelangan panda yang terbentuk menjadi "ibu jari" palsu, mengindikasikan bahwa garis keturunan evolusi suatu organisme dapat membatasi adaptasi apa yang memungkinkan.[120]
Selama adaptasi, beberapa struktur dapat kehilangan fungsi awalnya dan menjadi struktur vestigial.[121] Struktur tersebut dapat memiliki fungsi yang kecil atau sama sekali tidak berfungsi pada spesies sekarang, namun memiliki fungsi yang jelas pada spesies leluhur atau spesies lainnya yang berkerabat dekat. Contohnya meliputi pseudogen,[122] sisa mata yang tidak berfungsi pada ikan gua yang buta,[123] sayap pada burung yang tidak dapat terbang,[124] dan keberadaan tulang pinggul pada ikan paus dan ular.[119] Contoh stuktur vestigial pada manusia meliputi geraham bungsu,[125] tulang ekor,[121] dan umbai cacing (apendiks vermiformis).[121]
Bidang investigasi masa kini pada biologi perkembangan evolusioner adalah perkembangan yang berdasarkan adaptasi dan eksaptasi.[126] Riset ini mengalamatkan asal muasal dan evolusi perkembangan embrio, dan bagaimana modifikasi perkembangan dan proses perkembangan ini menghasilkan ciri-ciri yang baru.[127] Kajian pada bidang ini menunjukkan bahwa evolusi dapat mengubah perkembangan dan menghasilkan struktur yang baru, seperti stuktur tulang embrio yang berkembang menjadi rahang pada beberapa hewan daripada menjadi telinga tengah pada mamalia.[128] Adalah mungkin untuk struktur yang telah hilang selama proses evolusi muncul kembali karena perubahan pada perkembangan gen, seperti mutasi pada ayam yang menyebabkan pertumbuhan gigi yang mirip dengan gigi buaya.[129] Adalah semakin jelas bahwa kebanyakan perubahan pada bentuk organisme diakibatkan oleh perubahan pada tingkat dan waktu ekspresi sebuah set kecil gen yang terpelihara.[130]

Koevolusi

Interaksi antar organisme dapat menghasilkan baik konflik maupuan koopreasi. Ketika interaksi antar pasangan spesies, seperti patogen dengan inang atau predator dengan mangsanya, spesies-spesies ini mengembangkan set adaptasi yang bersepadan. Dalam hal ini, evolusi satu spesies menyebabkan adaptasi spesies ke-dua. Perubahan pada spesies ke-dua kemudian menyebabkan kembali adaptasi spesies pertama. Siklus seleksi dan respon ini dikenal sebagai koevolusi.[131] Contohnya adalah produksi tetrodotoksin pada kadal air Taricha granulosa dan evolusi resistansi tetrodotoksin pada predatornya, ular Thamnophis sirtalis. Pada pasangan predator-mangsa ini, persaingan senjata evolusioner ini mengakibatkan kadar racun yang tinggi pada mangsa dan resistansi racun yang tinggi pada predatornya.[132]

Kooperasi

Namun, tidak semua interaksi antar spesies melibatkan konflik.[133] Pada kebanyakan kasus, interaksi yang saling menguntungkan berkembang. Sebagai contoh, kooperasi ekstrem yang terdapat antara tanaman dengan fungi mycorrhizal yang tumbuh di akar tanaman dan membantu tanaman menyerap nutrien dari tanah.[134] Ini merupakan hubungan timbal balik, dengan tanaman menyediakan gula dari fotosintesis ke fungi. Pada kasus ini, fungi sebenarnya tumbuh di dalam sel tanaman, mengijinkannya bertukar nutrien dengan inang manakala mengirim sinyal yang menekan sistem immun tanaman.[135]
Koalisi antara organisme spesies yang sama juga berkembang. Kasus ekstrem ini adalah eusosialitas yang ditemukan pada serangga sosial, seperti lebah, rayap, dan semut, di mana serangga mandul memberi makan dan menjaga sejumlah organisme dalam koloni yang dapat berkembang biak. Pada skala yang lebih kecil sel somatik yang menyusun tubuh seekor hewan membatasi reproduksinya agar dapat menjaga organisme yang stabil, sehingga kemudian dapat mendukung sejumlah kecil sel nutfah hewan untuk menghasilkan keturunan. Dalam kasus ini, sel somatik merespon terhadap signal tertentu yang menginstruksikannya untuk tumbuh maupun mati. Jika sel mengabaikan signal ini dan kemudian menggandakan diri, pertumbuhan yang tidak terkontrol ini akan menyebabkan kanker.[38]
Kooperasi dalam spesies diperkirakan berkembang melalui proses seleksi sanak (kin selection), di mana satu organisme berperan memelihara keturunan sanak saudaranya.[136] Aktivitas ini terseleksi karena apabila individu yang "membantu" mengandung alel yang mempromosikan aktivitas bantuan, adalah mungkin bahwa sanaknya "juga" mengandung alel ini, sehingga alel-alel tersebut akan diwariskan.[137] Proses lainnya yang mempromosikan kooperasi meliputi seleksi kelompok, di mana kooperasi memberikan keuntungan terhadap kelompok organisme tersebut.[138]

Pembentukan spesies baru (Spesiasi)

Empat mekanisme spesiasi.
Spesiasi adalah proses suatu spesies berdivergen menjadi dua atau lebih spesies.[139] Ia telah terpantau berkali-kali pada kondisi laboratorium yang terkontrol maupun di alam bebas.[140] Pada organisme yang berkembang biak secara seksual, spesiasi dihasilkan oleh isolasi reproduksi yang diikuti dengan divergensi genealogis. Terdapat empat mekanisme spesiasi. Yang paling umum terjadi pada hewan adalah spesiasi alopatrik, yang terjadi pada populasi yang awalnya terisolasi secara geografis, misalnya melalui fragmentasi habitat atau migrasi. Seleksi di bawah kondisi demikian dapat menghasilkan perubahan yang sangat cepat pada penampilan dan perilaku organisme.[141][142] Karena seleksi dan hanyutan bekerja secara bebas pada populasi yang terisolasi, pemisahan pada akhirnya akan menghasilkan organisme yang tidak akan dapat berkawin campur.[143]
Mekanisme kedua spesiasi adalah spesiasi peripatrik, yang terjadi ketika sebagian kecil populasi organisme menjadi terisolasi dalam sebuah lingkungan yang baru. Ini berbeda dengan spesiasi alopatrik dalam hal ukuran populasi yang lebih kecil dari populasi tetua. Dalam hal ini, efek pendiri menyebabkan spesiasi cepat melalui hanyutan genetika yang cepat dan seleksi terhadap lungkang gen yang kecil.[144]
Mekanisme ketiga spesiasi adalah spesiasi parapatrik. Ia mirip dengan spesiasi peripatrik dalam hal ukuran populasi kecil yang masuk ke habitat yang baru, namun berbeda dalam hal tidak adanya pemisahan secara fisik antara dua populasi. Spesiasi ini dihasilkan dari evolusi mekanisme yang mengurangi aliran genetika antara dua populasi.[139] Secara umum, ini terjadi ketika terdapat perubahan drastis pada lingkungan habitat tetua spesies. Salah satu contohnya adalah rumput Anthoxanthum odoratum, yang dapat mengalami spesiasi parapatrik sebagai respon terhadap polusi logam terlokalisasi yang berasal dari pertambangan.[145] Pada kasus ini, tanaman berevolusi menjadi resistan terhadap kadar logam yang tinggi dalam tanah. Seleksi keluar terhadap kawin campur dengan populasi tetua menghasilkan perubahan pada waktu pembungaan, menyebabkan isolasi reproduksi. Seleksi keluar terhadap hibrid antar dua populasi dapat menyebabkan "penguatan", yang merupakan evolusi sifat yang mempromosikan perkawinan dalam spesies, serta peralihan karakter, yang terjadi ketika dua spesies menjadi lebih berbeda pada penampilannya.[146]
Isolasi geografis burung Finch di Kepulauan Galapagos menghasilkan lebih dari satu lusin spesies baru.
Mekanisme keempat spesiasi adalah spesiasi simpatrik, di mana spesies berdivergen tanpa isolasi geografis atau perubahan pada habitat. Mekanisme ini cukup langka karena hanya dengan aliran gen yang sedikit akan menghilangkan perbedaan genetika antara satu bagian populasi dengan bagian populasi lainnya.[147] Secara umum, spesiasi simpatrik pada hewan memerlukan evolusi perbedaan genetika dan perkawinan tak-acak, mengijinkan isolasi reproduksi berkembang.[148]
Salah satu jenis spesiasi simpatrik melibatkan perkawinan silang dua spesies yang berkerabat, menghasilkan spesies hibrid. Hal ini tidaklah umum terjadi pada hewan karena hewan hibrid bisanya mandul. Sebaliknya, perkawinan silang umumnya terjadi pada tanaman, karena tanaman sering menggandakan jumlah kromosomnya, membentuk poliploid. Ini mengijinkan kromosom dari tiap spesies tetua membentuk pasangan yang sepadan selama meiosis.[149] Salah satu contoh kejadian spesiasi ini adalah ketika tanaman Arabidopsis thaliana dan Arabidopsis arenosa berkawin silang, menghasilkan spesies baru Arabidopsis suecica.[150] Hal ini terjadi sekitar 20.000 tahun yang lalu,[151] dan proses spesiasi ini telah diulang dalam laboratorium, mengijinkan kajian mekanisme genetika yang terlibat dalam proses ini.[152] Sebenarnya, penggandaan kromosom dalam spesies merupakan sebab utama isolasi reproduksi, karena setengah dari kromosom yang berganda akan tidak sepadan ketika berkawin dengan organisme yang kromosomnya tidak berganda.[73]

Kepunahan

Fosil tarbosaurus. Dinosaurus non-aves yang mati pada peristiwa kepunahan Kapur-Tersier pada akhir periode Kapur.
Kepunahan merupakan kejadian hilangnya keseluruhan spesies. Kepunahan bukanlah peristiwa yang tidak umum, karena spesies secara reguler muncul melalui spesiasi dan menghilang melalui kepunahan.[153] Sebenarnya, hampir seluruh spesies hewan dan tanaman yang pernah hidup di bumi telah punah,[154] dan kepunahan tampaknya merupakan nasib akhir semua spesies.[155] Kepunahan telah terjadi secara terus menerus sepanjang sejarah kehidupan, walaupun kadang-kadang laju kepunahan meningkat tajam pada peristiwa kepunahan massal.[156] Peristiwa kepunahan Kapur-Tersier adalah salah satu contoh kepunahan massal yang terkenal, di mana dinosaurus menjadi punah. Namun peristiwa yang lebih awal, Peristiwan kepunahan Perm-Trias lebih buruk, dengan sekitar 96 persen spesies punah.[156] Peristiwa kepunahan Holosen merupakan kepunahan massal yang diasosiasikan dengan ekspansi manusia ke seluruh bumi selama beberapa ribu tahun. Laju kepunahan masa kini 100-1000 kali lebih besar dari laju latar, dan sampai dengan 30 persen spesies dapat menjadi punah pada pertengahan abad ke-21.[157] Aktivitas manusia sekarang menjadi penyebab utama peristiwa kepunahan yang sedang berlangsung ini.[158] Selain itu, pemanasan global dapat mempercepat laju kepunahan lebih lanjut.[159]
Peranan kepunahan pada evolusi tergantung pada jenis kepunahan tersebut. Penyebab persitiwa kepunahan "tingkat rendah" secara terus menerus (yang merupakan mayoritas kasus kepunahan) tidaklah jelas dan kemungkinan merupakan akibat kompetisi antar spesies terhadap sumber daya yang terbatas (prinsip hindar-saing).[12] Jika kompetisi dari spesies lain mengubah probabilitas suatu spesies menjadi punah, hal ini dapat menghasilkan seleksi spesies sebagai salah satu tingkat seleksi alam.[91] Peristiwa kepunahan massal jugalah penting, namun daripada berperan sebagai gaya selektif, ia secara drastis mengurangi keanekaragaman dan mendorong evolusi cepat secara tiba-tiba serta spesiasi pada makhluk yang selamat dari kepunahan.[156]

Sejarah evolusi kehidupan

Asal usul kehidupan

Asal usul kehidupan merupakan prekursor evolusi biologis, namun pemahaman terhadap evolusi yang terjadi seketika organisme muncul dan investigasi bagaimana ini terjadi tidak tergantung pada pemahaman bagaimana kehidupan dimulai.[160] Konsensus ilmiah saat ini adalah bahwa senyawa biokimia yang kompleks, yang menyusun kehidupan, berasal dari reaksi kimia yang lebih sederhana. Namun belumlah jelas bagaimana hal itu terjadi.[161] Tidak begitu pasti bagaimana perkembangan kehidupan yang paling awal, struktur kehidupan pertama, ataupun identitas dan ciri-ciri dari leluhur universal terakhir dan lungkang gen leluhur.[162][163] Oleh karena itu, tidak terdapat konsensus ilmiah yang pasti bagaimana kehidupan dimulai, namun terdapat beberapa proposal yang melibatkan molekul swa-replikasi (misalnya RNA)[164] dan perakitan sel sederhana.[165]

Nenek moyang bersama

Hominoid merupakan keturunan dari nenek moyang yang sama.
Semua organisme di bumi merupakan keturunan dari leluhur atau lungkang gen leluhur yang sama.[166] Spesies masa kini yang juga berada dalam proses evolusi dengan keanekaragamannya merupakan hasil dari rentetan peristiwa spesiasi dan kepunahan.[167] Nenek moyang bersama organisme pertama kali dideduksi dari empat fakta sederhana mengenai organisme. Pertama, bahwa organisme-organisme memiliki distribusi geografi yang tidak dapat dijelaskan dengan adaptasi lokal. Kedua, bentuk keanekaragaman hayati tidaklah berupa organisme yang berbeda sama sekali satu sama lainnya, melainkan berupa organisme yang memiliki kemiripan morfologis satu sama lainnya. Ketiga, sifat-sifat vestigial dengan fungsi yang tidak jelas memiliki kemiripan dengan sifat leluhur yang berfungsi jelas. Terakhir, organisme-organisme dapat diklasifikasikan berdasarkan kemiripan ini ke dalam kelompok-kelompok hirarkis.[7]
Spesies-spesies lampau juga meninggalkan catatan sejarah evolusi mereka. Fosil, bersama dengan anatomi yang dapat dibandingkan dengan organisme sekarang, merupakan catatan morfologi dan anatomi.[168] Dengan membandingkan anatomi spesies yang sudah punah dengan spesies modern, ahli paleontologi dapat menarik garis keturunan spesies tersebut. Namun pendekatan ini hanya berhasil pada organisme-organisme yang mempunyai bagian tubuh yang keras, seperti cangkang, kerangka, atau gigi. Lebih lanjut lagi, karena prokariota seperti bakteri dan arkaea hanya memiliki kemiripan morfologi bersama yang terbatas, fosil-fosil prokariota tidak memberikan informasi mengenai leluhurnya.
Baru-baru ini, bukti nenek moyang bersama datang dari kajian kemiripan biokimia antar spesies. Sebagai contoh, semua sel hidup di dunia ini mempunyai set dasar nukleotida dan asam amino yang sama.[169] Perkembangan genetika molekuler telah menyingkap catatan evolusi yang tertinggal pada genom organisme, sehingga dapat diketahui kapan spesies berdivergen melalui jam molekul yang dihasilkan oleh mutasi.[170] Sebagai contoh, perbandingan urutan DNA ini telah menyingkap kekerabatan genetika antara manusia dengan simpanse dan kapan nenek moyang bersama kedua spesies ini pernah ada.[171]

Evolusi kehidupan

Pohon evolusi yang menunjukkan divergensi spesies-spesies modern dari nenek moyang bersama yang berada di tengah[172] Tiga domain diwarnai berbeda, dengan warna biru adalah bakteri, hijau adalah arkaea, dan merah adalah eukariota.
Walaupun terdapat ketidakpastian bagaimana kehidupan bermula, adalah umumnya diterima bahwa prokariota hidup di bumi sekitar 3–4 milyar tahun yang lalu.[173][174] Tidak terdapat perubahan yang banyak pada morfologi atau organisasi sel yang terjadi pada organisme ini selama beberapa milyar tahun ke depan.[175]
Eukariota merupakan perkembangan besar pada evolusi sel. Ia berasal dari bakteri purba yang ditelan oleh leluhur sel prokariotik dalam asosiasi kooperatif yang disebut endosimbiosis.[82][176] Bakteri yang ditelan dan sel inang kemudian menjalani koevolusi, dengan bakteri berevolusi menjadi mitokondria ataupun hidrogenosom.[177] Penelanan kedua secara terpisah pada organisme yang mirip dengan sianobakteri mengakibatkan pembentukan kloroplas pada ganggang dan tumbuhan.[178] Tidaklah diketahui kapan sel pertama eukariotik muncul, walaupun sel-sel ini muncul sekitar 1,6 - 2,7 milyar tahun yang lalu.
Sejarah kehidupan masih berupa eukariota, prokariota, dan arkaea bersel tunggal sampai sekitar 610 milyar tahun yang lalu, ketika organisme multisel mulai muncul di samudra pada periode Ediakara.[173][179] Evolusi multiselularitas terjadi pada banyak peristiwa yang terpisah, terjadi pada organisme yang beranekaragam seperti bunga karang, ganggang coklat, sianobakteri, jamur lendir, dan miksobakteri.[180]
Segera sesudah kemunculan organisme multisel, sejumlah besar keanekaragaman biologis muncul dalam jangka waktu lebih dari sekitar 10 juta tahun pada perstiwa yang dikenal sebagai ledakan Kambria. Pada masa ini, mayoritas jenis hewan modern muncul pada catatan fosil, demikian pula garis silsilah hewan yang telah punah.[181] Beberapa faktor pendorong ledakan Kambria telah diajukan, meliputi akumulasi oksigen pada atmosfer dari fotosintesis.[182] Sekitar 500 juta tahun yang lalu, tumbuhan dan fungi mengkolonisasi daratan, dan dengan segera diikuti oleh arthropoda dan hewan lainnya.[183] Hewan amfibi pertama kali muncul sekitar 300 juta tahun yang lalu, diikuti amniota, kemudian mamalia sekitar 200 juta tahun yang lalu, dan aves sekitar 100 juta tahun yang lalu. Namun, walaupun terdapat evolusi hewan besar, organisme-organisme yang mirip dengan organisme awal proses evolusi tetap mendominasi bumi, dengan mayoritas biomassa dan spesies bumi berupa prokariota.[109]

Tanggapan sosial dan budaya

Seiring dengan penerimaan "Darwinisme" yang meluas pada 1870-an, karikatur Charles Darwin dengan tubuh kera atau monyet menyimbolkan evolusi.[184]
Pada abad ke-19, terutama semenjak penerbitan buku Darwin "The Origin of Species", pemikiran bahwa kehidupan berevolusi mendapat banyak kritik dan menjadi tema yang kontroversial. Namun demikian, kontroversi ini pada umumnya berkisar pada implikasi teori evolusi di bidang filsafat, sosial, dan agama. Di dalam komunitas ilmuwan, fakta bahwa organisme berevolusi telah diterima secara luas dan tidak mendapat tantangan.[12] Walaupun demikian, evolusi masih menjadi konsep yang diperdebatkan oleh beberapa kelompok agama.[185]
Manakala berbagai kelompok agama berusaha menyambungkan ajaran mereka dengan teori evolusi melalui berbagai konsep evolusi teistik, terdapat banyak pendukung ciptaanisme yang percaya bahwa evolusi berkontradiksi dengan mitos penciptaan yang ditemukan pada ajaran agama mereka.[186] Seperti yang sudah diprediksi oleh Darwin, implikasi yang paling kontroversial adalah asal usul manusia. Di beberapa negara, terutama di Amerika Serikat, pertentangan antara agama dan sains telah mendorong kontroversi penciptaan-evolusi, konflik keagamaan yang berfokus pada politik dan pendidikan.[187] Manakala bidang-bidang sains lainnya seperti kosmologi[188] dan ilmu bumi[189] juga bertentangan dengan interpretasi literal banyak teks keagamaan, biologi evolusioner mendapatkan oposisi yang lebih signifikan.
Beberapa contoh kontroversi tak beralasan yang diasosiasikan dengan teori evolusi adalah "Darwinisme sosial", istilah yang diberikan kepada teori Malthusianisme yang dikembangkan oleh Herbert Spencer mengenai sintasan yang terbugar (survival of the fittest) dalam masyarakat, dan oleh lainnya mengklaim bahwa kesenjangan sosial, rasisme, dan imperialisme oleh karena itu dibenarkan.[190] Namun, pemikiran-pemikiran ini berkontradiksi dengan pandangan Darwin itu sendiri, dan ilmuwan berserta filsuf kontemporer menganggap pemikiran ini bukanlah amanat dari teori evolusi maupun didukung oleh data.[191][192]

Aplikasi

Aplikasi utama evolusi pada bidang teknologi adalah seleksi buatan, yakni seleksi terhadap sifat-sifat tertentu pada sebuah populasi organisme yang disengajakan. Manusia selama beberapa ribu tahun telah menggunakan seleksi buatan pada domestikasi tumbuhan dan hewan.[193] Baru-baru ini, seleksi buatan seperti ini telah menjadi bagian penting dalam rekayasa genetika, dengan penanda terseleksi seperti gen resistansi antibiotik digunakan untuk memanipulasi DNA pada biologi molekuler. Karena evolusi dapat menghasilkan proses dan jaringan yang sangat optimal, ia memiliki banyak aplikasi pada ilmu komputer. Pada ilmu komputer, simulasi evolusi yang menggunakan algoritma evolusi dan kehidupan buatan dimulai oleh Nils Aall Barricelli pada tahun 1960-an, dan kemudian diperluas oleh Alex Fraser yang mempublikasi berbagai karya ilmiah mengenai simulasi seleksi buatan.[194] Seleksi buatan menjadi metode optimalisasi yang dikenal luas oleh hasil kerja Ingo Rechenberg pada tahun 1960-an dan awal tahun 1970-an, yang menggunakan strategi evolusi untuk menyelesaikan masalah teknik yang kompleks.[195] Algoritma genetika utamanya, menjadi populer oleh karya tulisan John Holland.[196] Seiring dengan meningkatnya ketertarikan akademis, peningkatan kemampuan komputer mengijinkan aplikasi yang praktis, meliputi evolusi otomatis program komputer.[197] Algoritma evolusi sekarang digunakan untuk menyelesaikan masalah multidimensi. Penyelesaian menggunakan algoritma ini lebih efisien daripada menggunakan perangkat lunak yang diproduksi oleh perancang manusia. Selain itu, ia juga digunakan untuk mengoptimalkan desain sistem.[198]